Monday, 6 April 2015







NEW AVIATION INNOVATION
  • A revolution in aviation:
  • The Hoverbike is the result of years worth of R&D. We combined the simplicity of a motorbike and the freedom of a helicopter to create the world’s first flying motorcycle.When compared with a helicopter, the Hoverbike is cheaper, more rugged and easier to use – and represents a whole new way to fly.  The Hoverbike flies like a quadcopter, and can be flown unmanned or manned, while being a safe – low level aerial workhorse with low on-going maintenance.
  • Goal:
  • The Hoverbike has been designed from the very beginning to replace conventional helicopters such as the Robinson R22 in everyday one man operational areas like cattle mustering and survey, not just for the obvious fact that it is inefficient and dangerous to place complex conventional helicopters in such harsh working environments but also from a practical commercial position in which bringing to market a cheaper better product will not only take over the existing market but can open it up to far more new customers who before could not afford the upfront costs of a typical helicopter and the very expensive and often unlooked for mantainace costs.
  • Our goal is to produce an extremely reliable helicopter, designed with rugged simplicity at its heart and true pilot safety built into the design and operation of the aircraft
  • Nothing we are doing is new. We are not developing any component or system that has not been designed and thoroughly tested before. If we are doing anything new it is the combination of existing systems. We believe that the best step forward is just that – a single step forward. Nature and commercial history tells us this best.
Second Hoverbike Prototype
Second Hoverbike Prototype
  • Current Hoverbike:
  • Our first Hoverbike prototype is a bi-copter. The vehicle is controlled by deflecting thrust from its two propellers using control vanes – these are a bit like rudders or ailerons on a plane.  After extensive testing involving the manned vehicle and scale models, we moved to a proven quadcopter design, because with current technology we could not design a bi-copter cheap enough for safe and competitive sales. The bi-copter is an elegant solution and vehicle – however the available technology is not ready yet for a practical vehicle with a bi-copter design.The most noticeable feature of the new Hoverbike and the 1/3rd scale drone is its unique patent pending offset and overlapping rotor blades, designed to reduce weight and planform area. Just like the manned vehicle, the ducting around the propellers is a safety feature, and the vehicle is lightweight and powerful, while folding to a compact size for transportation.
  • We are in the final construction stages of the latest manned prototype of Hoverbike, and in a few months we will start flight testing. After the successful completion of test flights we will build a final engineering prototype for submission to aviation certification authorities. This all takes a lot of time and money and raising funds to achieve this is what this campaign is all about.  We have a proven track record over the years, and our dedication to the Hoverbike development will continue beyond this kickstarter campaign until we are ready for sale of the manned Hoverbike.

  • History:
  • The original Hoverbike was built by Chris Malloy of New Zealand,  after work and studies in his garage in suburban Sydney Australia.  This project started out as a hobby, but quickly grew into a commercial enterprise,  with interest from people and groups such as universities, farmers, search and rescue, private and military, with notable visits from the US Army G-3/5/7  and Locheed Martin “skunk works”
  • Most of the frame of the original Hoverbike was hand crafted from carbon fibre, kevlar and aluminum with a foam core.
Build_1
Build_2 Build_5
Some detailed features required hand shaping as opposed to CAD modelling and CNC additive and subtractive manufacturing.
Build_3
As you can see on the original Hoverbike, there are not many parts. (so few parts to fail).
Build_4
Testing was sporadic over the first months after the initial built was completed.
TestFlight_1st
The test flight below, shows a flight test, where the throttle and pitch response was being tested
TestFlight_3
  • Development:
  • The hoverbike development has been broken up into 3 distinct phases: Design, Construction and Testing, with further program’s running in parallel such as marketing, business and aviation certification
  • To be expected there is a certain amount of fluidity between these development phases, with an emphasis on early error and integration detection and correction, which has already lead to reduced development time and costs.
  • The hoverbike to date has performed exactly as predicted, a testament to the basic design of the airframe. With the first prototype design and construction phases complete and testing begun.

  • Testing:
  • Flight testing of the Hoverbike involves 3 steps to achieve production ready flight. These are described as Development, Engineering and Production.
  • The development phase includes the initial flight tests of the hoverbike which is includes in roughly this order; general airframe testing, tethered hovering, untethered hovering, translational lifting, spin tests, stall tests etc (some conducted unmanned).
  • The engineering step is really just data validation, and is not used to expand the design envelope on the current model. An example of this is performance testing.
  • The production step will confirm that the production hoverbike is preforming and is built to all characteristics of the design.


$87,365
Devoted and donated so far!


BitCoin

 Please contribute to the future of transportion.
copied:  http://www.hover-bike.com/MA/the-hoverbike/how-you-can-own-it/

Friday, 6 February 2015



UAV NEWS
Establishing a CODE for UAVs to fly together by Staff Writers Washington DC (SPX) Jan 28, 2015


DARPA's Collaborative Operations in Denied Environment (CODE) program aims to develop algorithms and software that would extend the mission capabilities of existing unmanned aircraft systems (UAS) well beyond the current state of the art, with the goal of improving U.S. forces' ability to conduct operations in denied or contested airspace. CODE would enable mixed teams of unmanned aircraft to find targets and engage them as appropriate under established rules of engagement, leverage nearby CODE-enabled systems with minimal supervision, and adapt to situations due to attrition of friendly forces or the emergence of unanticipated threats-all under the command of a single human mission supervisor. CODE envisions improvements that would help transform UAS operations from requiring multiple people to operate a single UAS to having one person able to oversee six or more unmanned vehicles simultaneously. For a larger version of this image please go here.
The U.S. military's investments in unmanned aircraft systems (UAS) have proven invaluable for missions from intelligence, surveillance and reconnaissance (ISR) to tactical strike.Most of the current systems, however, require constant control by a dedicated pilot and sensor operator as well as a large number of analysts, all via telemetry. These requirements severely limit the scalability and cost-effectiveness of UAS operations and pose operational challenges in dynamic, long-distance engagements with highly mobile targets in contested electromagnetic environments.DARPA's Collaborative Operations in Denied Environment (CODE) program aims to overcome these challenges by developing algorithms and software that would extend the mission capabilities of existing unmanned aircraft well beyond the current state-of-the-art, with the goal of improving U.S. forces' ability to conduct operations in denied or contested airspace.CODE researchers seek to create a modular software architecture that is resilient to bandwidth limitations and communications disruptions, yet compatible with existing standards and capable of affordable retrofit into existing platforms.DARPA has released a Special Notice inviting interested parties to identify their interest in participation in select Phase 1 CODE meetings. DARPA is particularly interested in participants with capabilities, methodologies, and approaches that are related to CODE research and focused on revolutionary approaches to unmanned aircraft systems, autonomy and collaborative operations.Responses to the Special Notice will be used to select the participants and should not contain intellectual, confidential, proprietary or other privileged information.Two meetings are currently planned: an Open Architecture Meeting and a Technology Interchange Meeting. The Open Architecture Meeting will review the requirements and approaches for making the CODE open architecture compatible with communication-constrained, distributed, highly autonomous collaborative systems.During the Technology Interchange Meeting, invited participants will present technologies for potential incorporation into the demonstration planned for Phases 2 and 3 of the program and ensure that CODE leverages the best available technologies from all possible sources.CODE CODE intends to focus in particular on developing and demonstrating improvements in collaborative autonomy: the capability for groups of UAS to work together under a single human commander's supervision. The unmanned vehicles would continuously evaluate themselves and their environment and present recommendations for UAV team actions to the mission supervisor who would approve, disapprove or direct the team to collect more data.Using collaborative autonomy, CODE-enabled unmanned aircraft would find targets and engage them as appropriate under established rules of engagement, leverage nearby CODE-equipped systems with minimal supervision, and adapt to dynamic situations such as attrition of friendly forces or the emergence of unanticipated threats.CODE's envisioned improvements to collaborative autonomy would help transform UAS operations from requiring multiple people to operate each UAS to having one person who is able to command and control six or more unmanned vehicles simultaneously.Commanders could mix and match different systems with specific capabilities that suit individual missions instead of depending on a single UAS that integrates all needed capabilities but whose loss would be potentially catastrophic. This flexibility could significantly increase the mission- and cost-effectiveness of legacy assets as well as reduce the development times and costs of future systems."Just as wolves hunt in coordinated packs with minimal communication, multiple CODE-enabled unmanned aircraft would collaborate to find, track, identify and engage targets, all under the command of a single human mission supervisor," said Jean-Charles Lede, DARPA program manager."Further, CODE aims to decrease the reliance of these systems on high-bandwidth communication and deep crew bench while expanding the potential spectrum of missions through combinations of assets-all at lower overall costs of operation. These capabilities would greatly enhance survivability and effectiveness of existing air platforms in denied environments."

 

Wikipedia

Search results